Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 15, 2026
-
Anionic polymerized ionic liquids with a fixed sulfonylimide group have emerged as promising materials for energy storage applications, electromechanical devices, and gas separation membranes due to their highly delocalized anionic charges. However, synthetic challenges have limited the production of high-purity poly(sulfonylimide)s at scale and hindered systematic evaluation of their properties. We report a synthetic route for the production of high-purity sulfonylimide monomers at >10 g scales using a sulfur(VI) fluoride exchange (SuFEx) click reaction. Pendent sulfonylimide acrylate monomers with 1-ethyl-3-methylimidazolium counterions were synthesized with perfluorinated side groups of different lengths and cross-linked to form ionoelastomers. The networks were stretchable (≈120% strain at break), showed high solvent-free ionic conductivity (>3.8 × 10–3 mS/cm), and were hydrophobic with water contact angles >105°. The imidazolium counterions interact strongly with the perfluorinated side chains, yielding nonmonotonic trends in ionic conductivity and modulus relative to the glass transition temperature (Tg). Wide-angle X-ray scattering and vibrational spectroscopies reveal that shorter perfluorinated side groups promote cation dissociation, while longer chains cause ionic aggregation. We expect that this SuFEx approach will expand access to next-generation poly(sulfonylimide) electrolytes for a variety of applications and here demonstrate its utility for providing new insight into the molecular-level design of poly(sulfonylimide) ionoelastomers.more » « less
-
Abstract Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant‐environment interface, are demonstrated in an ultra‐thin (<6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon‐based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.more » « less
An official website of the United States government
